5 ESSENTIAL ELEMENTS FOR المعين

5 Essential Elements For المعين

5 Essential Elements For المعين

Blog Article

نختار الطريقة المناسبة لحساب مساحة المعين حسب المعطيات الموجودة في المسألة، وسنشرح ذلك بأمثلةٍ في الفقرة التالية..

يعدّ رباعياً مماسياً بمعنى أنّ كل ضلع من أضلاعه هو مماس لدائرة واحدة.

حيث يكون نصف المعين على شكل مثلث متساوي الساقين قاعدته هي قطر المعين، فإن:

ما هو سكراتش – تحميل سكراتش أون لاين بالعربي على الجوال والكمبيوتر

المعين له نفس صيغة حساب متوازي الأضلاع والمربع ، وتحصل على شكل رباعي بأبعاد متساوية.

ملحوظة: بشكل عام ، كل مربع هو معين ، more info لأنه يحتوي على جميع شروط المعين ، لكن العكس ليس صحيحا.

القانون الثاني: مساحة المعين = ارتفاع المعين × طول قاعدة المعين، بحيث أنّ ارتفاع المعين: هي طول المسافة العمودية بين أي ضلعين متقابلين.

تعرف مساحة المعين بأنها الحيز المحصور داخل المعين في المستوى ثنائي الأبعاد،[٢] ويمكن التعبير عنها رياضيًا حسب العلاقات الآتية:[٣]

الأضلاع المتقابلة متوازية والزوايا المتقابلة متساوية. (لأن هذا الشكل هو في الأساس متوازي أضلاع.)

الحساب بمعرفة طول القاعدة والارتفاع، عن طريق القانون التالي مساحة المعين = طول القاعدة* الارتفاع

و هو شكل رباعيّ الأضلاع، أضلاعه متساوية، والأضلاع المتقابلة متوازية، لكنّ زواياه غير متساوية، حيث إنّ كل زاويتين متقابلتين متساويتين فقط، بينما المربّع جميع زواياه قائمة، ومتساوية (تسعون درجة). عند تنصيف المعين بخطّ عموديّ وآخر أفقيّ، تنتج لدينا أربع مثلّثات: متساوية الساقين، ومتطابقة.

عند توصيل نقاط المنتصف لأنصاف أقطار المعين مع بعضها يمكننا الحصول على معين آخر داخل المعين الأصلي.

فيسبوك جوجل حساب ويكي هاو ليس لديك حساباً؟ إنشاء حساب

يعتبر حالةً خاصّةً من متوازي الأضلاع وحالةٌ خاصّةٌ من الدالتون.

قاعدة المعين هي أحد أضلاعه حيث يمكن استخدام طول أي ضلعٍ، لأنه كما ذكرنا سابقًا أضلاع المعين متساوية في الطول، والارتفاع هو المسافة العمودية من القاعدة المختارة إلى الجانب المقابل.

Report this page